SEM 1, 2023-24: ALGEBRAIC TOPOLOGY END-SEMESTRAL EXAMINATION

Max score: 50 marks. Time: 3 hours.

You may use any theorem proved in class in your solution, but please quote it fully and clearly.

- (1) Compute the fundamental group and the singular homology groups of the surface Σ_g for $g \ge 0$. Recall that Σ_g is obtained from a sphere by attaching g copies of the torus $\mathbb{S}^1 \times \mathbb{S}^1$. (8 marks)
- (2) For a finite CW-complex X and a *d*-sheeted covering $\tilde{X} \to X$, show that the Euler characteristic $\chi(\tilde{X}) = d \cdot \chi(X)$. (8 marks)
- (3) Prove that if $f : \mathbb{S}^n \to \mathbb{S}^n$ has no fixed points then deg $f = (-1)^{n+1}$. Use this to prove that for n = 2m, there is some point $x \in \mathbb{S}^{2m}$ with either f(x) = x or f(x) = -x. Deduce that every map $\mathbb{R}P^{2m} \to \mathbb{R}P^{2m}$ has a fixed point. (8 marks)
- (4) Fix $n \ge 1$. Let $f : \mathbb{S}^n \to \mathbb{S}^n$ be a deck transformation of a certain covering space map $\mathbb{S}^n \to X$. What can you say about the degree of f? (8 marks)
- (5) The Jordan curve theorem states that for any continuous, injective map $g: \mathbb{S}^{m-1} \to \mathbb{R}^m, \mathbb{R}^m \setminus g(\mathbb{S}^{m-1})$ has exactly two path-connected components. Using this or otherwise prove that there is no continuous injective map $\mathbb{S}^n \to \mathbb{R}^n$. (8 marks)
- (6) Show that S¹ × S¹ and S¹ ∨ S¹ ∨ S² have isomorphic homology groups in all dimensions, but their universal covering spaces do not. (8 marks)
- (7) Consider the properly discontinuous action of \mathbb{Z} on $X = \mathbb{R}^2 \setminus 0$ given by $(x, y) \mapsto (2^n x, y/2^n)$ for $n \in \mathbb{Z}$. Compute the fundamental group of the quotient $Y = X/\mathbb{Z}$. Hint: Note that the covering $X \to Y$ is regular. (8 marks)
- (8) If m < n, the embedding of \mathbb{R}^{m+1} in \mathbb{R}^{n+1} induces an embedding of $\mathbb{R}P^m$ in $\mathbb{R}P^n$. Compute the relative homology $H_k(\mathbb{R}P^n, \mathbb{R}P^m)$ for all k, n, m with n > m. Note that your answer may depend on the parity of m and n. (10 marks)

Date: 22-11-2023.